NCERT Solutions for Class 9 MATHS – Polynomials

India's Best 360° Online NTSE Preparation Platform

NTSE | CBSE | State Boards | Class 8th - 10th

- Write the degree of each of the following polynomials 1.
 - (i) $5x^3 + 4x^2 + 7x$ (ii) $4 y^2$
- (iii) $5t \sqrt{7}$
- (iv) 3

- (i) The degree of $5x^3 + 4x^2 + 7x$ is 3.
 - (ii) The degree of $4 y^2$ is 2.
 - (iii) The degree of $5t \sqrt{7} = 5t^1 \sqrt{7}$ is 1.
 - (iv) The degree of $3 = 3x^0$ is 0.
- 2. Classify the following as linear, quadratic and cubic polynomials:
 - (i) $x^2 + x$
- (ii) $x-x^3$
- (iii) $y + y^2 + 4$
- (iv) 1 + x

(v) 3t

- (vi) r^2
- (vii) $7x^3$

Sol.

- (i) $x^2 + x$ Quadratic polynomial.
- (ii) $x-x^3$ Cubic polynomial.
- (iii) $y + y^2 + 4$ Quadratic polynomial.
- (iv) 1 + x Linear polynomial.
- (v) 3t Linear polynomial.
- (vi) r^2 Quadratic polynomial.
- (vii) $7x^3$ Cubic polynomial.

- Find the value of the polynomial $5x-4x^2+3$ at 3.
 - (i) x = 0
- (ii) x = -1
- (iii) x = 2

Sol. (i) Putting x = 0, we get

$$p(0) = 5 \times 0 - 4(0)^2 + 3 = 3$$

(ii) Putting
$$x = -1$$
, we get

$$p(-1) = 5 \times (-1) - 4(-1)^2 + 3 = -5 - 4 + 3 = -6$$

(iii) Putting x = 2, we get

$$p(2) = 5 \times 2 - 4(2)^2 + 3 = 10 - 16 + 3 = -3$$

Download

NTSEGURU Mobile App

FREE from

- **4.** Find the remainder when $x^3 + 3x^2 + 3x + 1$ is divided by
 - (i) x + 1
- (ii) $x \frac{1}{2}$
- (iii) x
- (iv) $x + \pi$

- (v) 5 + 2x
- **Sol.** Let $p(x) = x^3 + 3x^2 + 3x + 1$
 - (i) x+1

Putting x+1=0, we get x=-1

Using remainder theorem, when $p(x) = x^3 + 3x^2 + 3x + 1$ is divided by x + 1, remainder is given by p(-1)

$$=(-1)^3+3(-1)^2+3(-1)+1$$

$$=-1+3-3+1$$

= 0

(ii)
$$x - \frac{1}{2}$$

Putting $x - \frac{1}{2} = 0$, we get, $x = \frac{1}{2}$

Using remainder theorem, when $p(x) = x^3 + 3x^2 + 3x + 1$ divided by $x - \frac{1}{2}$, remainder is given by $p\left(\frac{1}{2}\right)$

$$=\left(\frac{1}{2}\right)^3 + 3\left(\frac{1}{2}\right)^2 + 3\left(\frac{1}{2}\right) + 1$$

$$=\frac{1}{8}+3\times\frac{1}{4}+3\times\frac{1}{2}+1$$

$$=\frac{1+6+12+8}{8}$$

$$=\frac{27}{8}$$

(iii) x

Putting x = 0, we get

guru.in

Using remainder theorem, when $p(x) = x^3 + 3x^2 + 3x + 1$ is divided by x, remainder is given by p(0)

$$= (0)^3 + 3(0)^3 + 3(0) + 1$$

$$= 0 + 1$$

$$=0$$

(iv)
$$x + \pi$$

Putting $x + \pi = 0$, we get, $x = -\pi$

Using remainder theorem, when $p(x) = x^3 + 3x^2 + 3x + 1$ is divided by $x + \pi$, remainder is given by $p(-\pi)$

$$=(-\pi)^3+3(-\pi)^2+3(-\pi)+1$$

$$=-\pi^3+3\pi^2-3\pi+1$$

I still wonder how one man has such a deep undoutending of an examination. It becomes the truth what ever Nipin Six says about NTSE

An
NTSE Scholar
IIT-JEE (Adv.) AIR-3
Mukesh Pareek

(v)
$$5 + 2x$$

Putting
$$5 + 2x = 0$$
, we get $x = -\frac{5}{2}$

Using remainder theorem, when $p(x) = x^3 + 3x^2 + 3x + 1$ is divided by 5 + 2x, remainder is given by $p\left(-\frac{5}{2}\right)$

$$= \left(-\frac{5}{2}\right)^3 + 3\left(-\frac{5}{2}\right)^2 + 3\left(-\frac{5}{2}\right) + 1$$

$$= -\frac{125}{8} + 3 \times \frac{25}{4} - 3 \times \frac{5}{2} + 1$$

$$= \frac{-125 + 150 - 60 + 8}{8}$$

$$= -\frac{27}{8}$$

- 5. Find the remainder when $x^3 ax^2 + 6x a$ is divided by x a.
- **Sol.** Let $p(x) = x^3 ax^2 + 6x a$

Putting
$$x - a = 0$$
, we get $x = a$

Using remainder theorem, when $p(x) = x^3 - ax^2 + 6x - a$ is divided by x - a, remainder is given by p(a)

$$= (a)^3 - a(a)^2 + 6(a) - a$$

$$=a^3-a^3+6a-a$$

$$=5a$$

6. Find the value of k, if x-1 is a factor of p(x) in each of the following cases:

(i)
$$p(x) = x^2 + x + k$$

(ii)
$$p(x) = 2x^2 + kx + \sqrt{2}$$

(iii)
$$p(x) = kx^2 - \sqrt{2}x + 1$$

(iv)
$$p(x) = kx^2 - 3x + k$$

Sol. (i) If (x-1) is a factor of $p(x) = x^2 + x + k$, then

$$p(1) = 0$$

$$\Rightarrow (1)^2 + 1 + k = 0$$

$$\Rightarrow$$
 1+1+ $k=0$

$$\Rightarrow k = -2$$

Unburden the parents of your Study Expenses

Govt. of India

provides you scholarship till Post Graduation studies after your crack NTSE exam

(ii) If (x-1) is a factor of $p(x) = 2x^2 + kx + \sqrt{2}$, then

$$p(1) = 0$$

$$\Rightarrow 2(1)^2 + k(1) + \sqrt{2} = 0 \Rightarrow 2 + k + \sqrt{2} = 0$$

$$\Rightarrow k = -(2 + \sqrt{2})$$

(iii) If (x-1) is a factor of $p(x) = kx^2 - \sqrt{2}x + 1$, then

$$p(1) = 0$$

$$\Rightarrow k(1)^2 - \sqrt{2}(1) + 1 = 0 \Rightarrow k - \sqrt{2} + 1 = 0$$

$$\Rightarrow k = \sqrt{2} - 1$$

(iv) If (x-1) is a factor of $p(x) = kx^2 - 3x + k$, then

$$p(1) = 0$$

$$\Rightarrow k(1)^2 - 3(1) + k = 0 \Rightarrow k - 3 + k = 0$$

$$2k = 3$$
 $\Rightarrow k = \frac{3}{2}$

7. Factorise the following using appropriate identities:

(i)
$$9x^2 + 6xy + y^2$$

(ii)
$$4y^2 - 4y + 1$$

(iii)
$$x^2 - \frac{y^2}{100}$$

Sol. (i) $9x^2 + 6xy + y^2 = (3x)^2 + 2(3x)(y) + (y)^2$

$$=(3x + y)^2 = (3x + y)(3x + y)$$

(ii)
$$4v^2 - 4v + 1 = (2v)^2 - 2(2v)(1) + (1)^2$$

$$=(2y-1)^2=(2y-1)(2y-1)$$

(iii)
$$x^2 - \frac{y^2}{100} = (x)^2 - \left(\frac{y}{10}\right)^2$$

$$= \left(x - \frac{y}{10}\right) \left(x + \frac{y}{10}\right)$$

8. Factorise each of the following:

(i)
$$27y^3 + 125z^3$$

(ii)
$$64m^3 - 343n^3$$

Sol. (i)
$$27y^3 + 125z^3 = (3y)^3 + (5z)^3$$

$$= (3y+5z)[(3y)^2 - (3y)(5z) + (5z)^2]$$

$$=(3y+5z)(9y^2-15yz+25z^2)$$

(ii)
$$64m^3 - 343n^3 = (4m)^3 - (7n)^3$$

A Team that made Cracking NTSE
Easier Than Ever

$$= (4m-7n)[(4m)^2 + (4m)(7n) + (7n)^2]$$

= $(4m-7n)[16m^2 + 28mn + 49n^2]$

9. Factorise:

(i)
$$27x^3 + y^3 + z^3 - 9xyz$$

Sol.
$$27x^3 + y^3 + z^3 - 9xyz = (3x)^3 + y^3 + z^3 - 3(3x)(y)(z)$$

= $(3x + y + z)[(3x)^2 + y^2 + z^2 - (3x)y - yz - z(3x)]$
= $(3x + y + z)(9x^2 + y^2 + z^2 - 3xy - yz - 3zx)$

- **10.** If x + y + z = 0, show that $x^3 + y^3 + z^3 = 3xyz$,
- **Sol.** We know that,

$$x^{3} + y^{3} + z^{3} - 3xyz = (x + y + z)(x^{2} + y^{2} + z^{2} - xy - yz - zx)$$

$$= 0(x^{2} + y^{2} + z^{2} - xy - yz - zx) \quad (\because x + y + z = 0 \text{ given})$$

$$= 0$$

$$\Rightarrow x^{3} + y^{3} + z^{3} = 3xyz$$
Hence proved.

For complete NCERT Solutions visit www.ntseguru.in & take a free demo.

Or

Download NTSE GURU Android App for free from Google Playstore.

