NTSE

NCERT Solutions for Class 10
MATHS - Circle
India's Best 360° Online NTSE Preparation Platform
NTSE | CBSE | State Boards | Class 8th - 10th

1. How many tangents can a circle have?

Sol. A circle can have infinite number of tangents because a circle have infinite number of points on it and at every point a tangent can be drawn.
2. Fill in the blanks:
(i) A tangent to a circle intersects it in \qquad point (s).
(ii) A line intersecting a circle in two points is called a \qquad
(iii) A circle can have \qquad . parallel tangents at the most.
(iv) The common point of a tangent to a circle and the circle is called \qquad
Sol. (i) One
(ii) Secant
(iii) Two
(iv) Point of contact.
3. A tangent PQ at a point P of a circle of radius 5 cm meets a line through the centre O at a point Q so that $\mathrm{OQ}=12 \mathrm{~cm}$. Length PQ is :
(A)
12 cm
(B)
13 cm
(C) 8.5 cm
(D) $\sqrt{119} \mathrm{~cm}$.

Sol. Radius of the circle $=5 \mathrm{~cm}$
$O Q=12 \mathrm{~cm}$
$\angle O P Q=90^{\circ}$

[The tangent to a circle is perpendicular to the radius through the point of contact]
$P Q^{2}=O Q^{2}-O P^{2}$
[By Pythagoras theorem]
$P Q^{2}=12^{2}-5^{2}=144-25=119$
$P Q=\sqrt{119} \mathrm{~cm}$
Hence correct option is (D).

Download

NTSECURU Mobile App
FREE from
4. Draw a circle and two lines parallel to a given line such that one is a tangent and the other, a secant to the circle.

Sol. Here, $A B$ is the given line $C D$ is tangent to the given circle at the point M and parallel to $A B$, and EF is a secant parallel to AB.

In Us. 5 to 7, choose the correct option and give justification.
5. From a point Q , the length of the tangent to a circle is 24 cm and the distance of Q from the centre is 25 cm . The radius of the circle is:
(a) 7 cm
(b) 12 cm
(c) 15 cm
(d) 24.5 cm

Sol. (a) Let OT be $x \mathrm{~cm}$.
Then in right $\triangle Q T O$,

$$
\begin{aligned}
& Q O^{2}=Q T^{2}+O T^{2} \\
& \Rightarrow \quad(25)^{2}=(24)^{2}+x^{2} \\
& \Rightarrow \quad x^{2}=625-576=49 \\
& \Rightarrow \quad x=\sqrt{49}=7 \mathrm{~cm} .
\end{aligned}
$$

[By Pythagoras' Theorem]

Hence correct option is (a)
6. In Figure, if TP and TQ are the two tangents to a circle with centre O so that $\angle P O Q=110^{\circ}$, then $\angle P T Q$ is equal to :

(a) 60°
(b) 70°
(c) 80°
(d) 90°

Sol. (b) $\angle O P T=90^{\circ}$
$\angle O Q T=90^{\circ}$
$\angle P O Q=110^{\circ}$
$T P O Q$ is a quadrilateral, $\angle O P T+\angle P O Q+\angle O Q T+\angle P T Q=360^{\circ}$
$\therefore \quad \angle P T Q+\angle P O Q=180^{\circ}$
$\Rightarrow \quad \angle P T Q+110^{\circ}=180^{\circ}$
$\Rightarrow \quad \angle P T Q=180^{\circ}-110^{\circ}=70^{\circ}$

Hence, correct option is (b)
7. If tangents PA and PB from a point P to a circle with centre O are inclined to each other at angle of 80°, then $\angle P O A$ is equal to :
(a) 50°
(b) 60°
(c) 70°
(d) $\quad 80^{\circ}$

Sol. (a) In $\triangle P O A$ and $\triangle P O B$,

$$
\begin{array}{ll}
\angle P A O=\angle P B O & {\left[\text { Each of } 90^{\circ}\right]} \\
O A=O B & \text { [Radii of the circle] } \\
P A=P B & \text { [Both are tangents] } \\
\therefore \quad \triangle P O A \cong \triangle P O B & {[\text { By SAS congruence] }} \\
\Rightarrow \quad \angle A P O=\angle B P O & {[\text { CPCT] }} \\
\Rightarrow \angle A P O=\frac{1}{2} \angle A P B=\frac{1}{2} \times 80^{\circ}=40^{\circ}
\end{array}
$$

Unburden
the parents of your
Study Expenses

Govt. of India
provides you scholarship till Post Graduation studies after your crack NTSE exam

In $\triangle P A O, \angle A P O+\angle P O A+\angle O A P=180^{\circ}$

$$
\begin{aligned}
& \Rightarrow \quad 40^{\circ}+\angle P O A+90^{\circ}=180^{\circ} \\
& \Rightarrow \quad \angle P O A=50^{\circ} .
\end{aligned}
$$

Hence correct option is (a).
8. Prove that the tangents drawn at the ends of a diameter of a circle are parallel.

Sol. AB is a diameter of the circle, p and q are two tangents.

$O A \perp p$ and $O B \perp q$

$$
\begin{array}{ll}
\therefore & \angle 1=\angle 2=90^{\circ} \\
\Rightarrow & p \| q \quad[\angle 1 \text { and } \angle 2 \text { are alternate angles] }
\end{array}
$$

9. Prove that the perpendicular at the point of contact to the tangent to a circle passes through the centre.

Sol. Let O , be the centre of circle and AB is tangent at P . We have to prove that perpendicular at P to AB , passes through O .
Let perpendicular drawn at P point of AB does not pass through O . It passes through O^{\prime}.
Join OP and $O^{\prime} P$.
Tangent drawn at P passes through O^{\prime}.
Therefore,

$$
\begin{equation*}
\angle O^{\prime} P B=90^{\circ} \tag{1}
\end{equation*}
$$

We know that radius is perpendicular to tangent.
$\therefore \quad \angle O P B=90^{\circ}$
Comparing (1) \& (2)
$\angle O^{\prime} P B=\angle O P B$
From figure it is clear that, it is possible only when $O P$ and $O^{\prime} P$ are coincident lines. Therefore the perpendicular drawn at P passes through the centre O .

A Team that made Cracking NTSE Easier Than Ever

10. The length of a tangent from a point A at distance 5 cm from the centre of the circle is 4 cm . Find the radius of the circle.

Sol. $\quad \mathrm{OA}=\mathbf{5} \mathbf{~ c m}, \mathrm{AP}=\mathbf{4} \mathbf{~ c m}$ OP = Radius of the circle

$$
\begin{aligned}
& \angle O P A=90^{\circ} \\
& O A^{2}=A P^{2}+O P^{2} \\
& 5^{2}=4^{2}+O P^{2} \\
& \Rightarrow \quad 25=16+O P^{2} \\
& \Rightarrow \quad 25-16=O P^{2} \\
& \Rightarrow \quad 9=O P^{2} \\
& \Rightarrow \quad \sqrt{9}=O P \\
& \Rightarrow \quad O P=3 \mathrm{~cm} \\
& \therefore \quad \text { Radius }=3 \mathrm{~cm}
\end{aligned}
$$

[Radius and tangent are perpendicular]
[By Pythagoras theorem]

For complete NCERT Solutions visit www.ntseguru.in \& take a free demo. Or

Download NTSE GURU Android App for free from Google Playstore.

